目的 排除样品中高浓度活菌和大量辅料及死菌DNA的干扰,检测地衣芽孢杆菌活菌胶囊中金黄色葡萄球菌。方法 将叠氮溴化丙锭(PMA)、实时荧光定量PCR(qPCR)和微孔膜过滤法相结合,收集滤液后离心,富集菌体,优化PMA工作浓度、暗孵育时间和曝光时间,确定PMA最佳处理方案。采用不同浓度金黄色葡萄球菌的死菌与活菌进行PMA-qPCR方法验证,同时考察方法灵敏度和特异性。结果 样品采用5.0 μm的聚醚砜膜过滤,辅料截留率和滤液活菌计数最高。PMA工作质量浓度40 μg·mL-1,暗孵育时间10 min,曝光时间10 min为最佳处理方案,该处理方案下PMA既不影响活菌DNA的PCR扩增,又能进入死菌中结合DNA抑制其扩增。本法高效快速、实时准确,全过程筛选鉴定只需4 h,最低检测限为1×104 CFU·mL-1。结论 本法灵敏度高、特异性强,适用于地衣芽孢杆菌活菌制品中金黄色葡萄球菌的检测。
Abstract
OBJECTIVE To exclude the influences of high concentration of live bacteria and a large amount of excipients in the sample and the DNA interference of dead bacteria on the detection of Staphylococcus aureus in Bacillus licheniformis live capsules. METHODS Combining the azide propidium bromide (PMA), qPCR, with the microporous membrane filtration method, the filtrate was collected and the bacteria were enriched by centrifugal method, and the working concentration, dark incubation time and exposure time of PMA were optimized to determine the best treatment plan for PMA. Different concentrations of dead and live Staphylococcus aureus were used to verify the PMA-qPCR method, the sensitivity and specificity were also investigated. RESULTS When the sample was filtered with 5.0 μm polyethersulfone membrane, the highest excipient retention rate and viable bacteria count in the filtrate were obtained. The best treatment procedure was as follows: PMA working concentration 40 μg·mL-1, dark incubation time 10 min, exposure time 10 min. Under this procedure, PMA did not affect the PCR amplification of live bacteria DNA, and could enter dead bacteria to bind DNA and inhibit its amplification. The whole process of screening and identification took only 4 h, and the minimum detection limit was 1×104 CFU·mL-1. CONCLUSION This method is efficient, fast, real-time and accurate, with high sensitivity and specificity, which is suitable for the detection of Staphylococcus aureus in Bacillus licheniformis live product.
关键词
叠氮溴化丙锭 /
实时荧光定量PCR /
微生态活菌制品 /
地衣芽孢杆菌活菌胶囊 /
金黄色葡萄球菌
{{custom_keyword}} /
Key words
propidium monoazide /
qPCR /
probiotics /
Bacillus licheniformis live capsule /
Staphylococcus aureu
{{custom_keyword}} /
中图分类号:
R917
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] CHEN X S, HU W H. Curative effect and security analysis of live Bacillus licheniformis granules on infants' secondary diarrhea due to respiratory tract infection [J]. Chin Med Her(中国医药导报), 2014, 11(5):70-74.
[2] REN N G, CHEN W, PENG B, et al. Mechanism and clinical application of live Bacillus licheniformis preparation[J]. Chin J Clin Pharmacol(中国临床药理学杂志), 2013, 29(9):716-717,720.
[3] YUAN P N. Quality control of probiotics[J]. Chin J Food Hygi(中国食品卫生杂志), 1999, 11(2):15-17.
[4] LIU C, FANG Y, LONG Z, et al. Safety analysis of commercial probiotic bacillus [J]. Chin J Anim Sci(中国畜牧杂志), 2020, 56(8):203-208.
[5] WANG X,WANG P, GE Y Q, et al. Review on pathogenicity of Staphylococcus aureus in food [J]. Chin J Zoonoses(中国人兽共患病学报), 2017, 33(6):553-558.
[6] LI M H, LI Y, YAN L, et al. Antimicrobial resistance and enterotoxigenicity characteristics of foodborne Staphylococcus aureus isolates in China [J]. China Public Health(中国公共卫生), 2019, 35(5):574-578.
[7] CHAO G X, JIAO X A, ZHOU L P, et al. Enterotoxin production and resistance to anti-microbial drugs of Staphylococcus aureus in selected retail food products[J]. Chin J Health Lab Tech(中国卫生检验杂志), 2006, 16(8):904-907.
[8] Ch.P(2020) Vol Ⅲ(中国药典2020年版. 三部)[S]. 2020: 64-68.
[9] ZHENG X L, CHEN S, ZHAN X P, et al. Validation for contaminating microorganisms test in Bacillus licheniformis Particles[J]. Chin J Mod Appl Pharm (中国现代应用药学), 2015, 32 (3):339-343.
[10] HAN Q, KONG B H, LI P J, et al. Application of real-time PCR technology in Staphylococcus aureus detection[J]. Sci Technol Food Ind(食品工业科技), 2013, 34(9):359-363.
[11] TANG M J, ZHOU Q, ZHAO X Y, et al. Comparative study on 3 kinds of molecular amplification methods for rapid detection of Staphyloccocus aureus[J]. J Food Saf Qual(食品安全质量检测学报), 2016, 7(6):2247-2251.
[12] CAO X, ZHAO L C, YANG C Q, et al. Establishment of PMA-LAMP method for rapid detection of Staphylococcus aureus with sublethal injury[J]. Food Sci (食品科学), 2016, 37(24):149-155.
[13] ZHAO L Q, WANG J, QIN Y, et al. Detection of Staphylococcus aureus in foods by PMA combined with ddPCR[J]. J Microbiol(微生物学杂志), 2017, 37(1):105-109.
[14] STINSON L F, KEELAN J A, PAYNE M S. Characterization of the bacterial microbiome in first‐pass meconium using propidium monoazide (PMA) to exclude nonviable bacterial DNA [J]. Lett Appl Microbiol. 2019, 68(5):378-385.
[15] Ch.P(2015) Vol Ⅳ(中国药典2015年版. 四部)[S]. 2015: 140-141.
[16] HAN Z H, GUO S, HUANG T, et al. Detection of viable Lactobacillus plantarum P-8 in fermented milk using propidium monoazide combined with real-time fluorescence quantitative PCR[J]. Food Ferment Ind(食品与发酵工业), 2019, 45(1):183-189.
[17] LI B, HU Z, ELKINS C A. Detection of Live Escherichia coli O157:H7 Cells by PMA-qPCR[J]. J Vis, 2014:1-6. Doi:10.3791/50967.
[18] LUO J F, LIN W T, GUO Y. Detection of viable bacterium cells based on propidium monoazide in combination with PCR[J]. J South China Univ Technol(Nat Sci)(华南理工大学学报 自然科学版), 2010, 38(9):142-146.
[19] PAN Y, BREIDT F. Enumeration of viable Listeria monocytogenes cells by real-time PCR with propidium monoazide and ethidium monoazide in the presence of dead cells[J]. Appl Environ Microbiol, 2007, 73(24):8028-8031.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
浙江省基础公益研究计划项目资助(LGC19H300001)
{{custom_fund}}